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Abstract
Despite their prevalence in everyday technologies, auto-

mated speech recognition (ASR) systems often struggle with
disfluent speech. To diagnose and address these technical chal-
lenges, we evaluate OpenAI’s Whisper, a state-of-the-art ASR
service, using speech samples from podcasts with people who
stutter. Our results confirm the significant disparities in Whis-
per’s performance between fluent and stuttered speech. We
also observe that, within disfluent speech, Whisper performs
significantly worse on speech with sound repetitions - disflu-
encies more unique to stuttering. Notably, sound repetitions
often lead to systematic failures, triggering Whisper to hallu-
cinate over 20% of the time. Conducted by researchers who
themselves stutter, this study not only sheds new light on ASR
biases against disfluent speech, but also highlights the value
of disability-led research in addressing technological inequities
that impact people with disabilities.
Index Terms: speech recognition, human-computer interac-
tion, stuttering, algorithmic fairness

1. Introduction
Stuttering affects approximately 1% of the population world-
wide [1]. The condition is typically characterized by the speech
behaviors that people who stutter (PWS) may exhibit, such as
repetitions (“li-li-like this”), prolongations (“lllllike this”), and
blocks (“l—ike this”). Beyond these observable “speech dis-
fluencies”, many PWS also experience significant reductions in
their quality of life due to the communication challenges that
they face everyday.

As Automated Speech Recognition (ASR) technologies
have become an integral part of today’s communication envi-
ronment, they are playing an increasingly important role in the
communication experiences of people who stutter. However,
trained and optimized for fluent speech, today’s ASRs often
have great difficulty in working with stuttered speech, result-
ing three to four times higher word error rate (WER) compared
to non-stuttered speech [2]. While some previous work has re-
ported ASR’s performance disparity between stuttered and flu-
ent speech [2, 3, 4], their findings remain limited in consis-
tency, depth and diagnostic power. In this paper, we system-
atically benchmark Whisper – OpenAI’s state-of-the-art ASR
model with highly robust performance across languages and
noisy environments – against an refined version of the SEP-
28K dataset [5], a collection of natural stuttered speech an-
notated with stutter subtypes. By examining Whisper’s tran-
scription errors against verbatim and semantic transcriptions, as
well as under different subtypes of stutter, we present new in-
sights on Whisper’s progress and weakness in transcribing stut-
tered speech, shedding light on new directions and community-

centered goals for stuttering friendly ASR technology.

2. Related Works
While ASR systems have achieved remarkable performance on
various benchmarks, disparities persist in their effectiveness
across different demographic and linguistic groups. These dis-
parities often arise from biases in training datasets [6] and sys-
temic exclusion of marginalized communities [7].

Previous work highlights existing ASR models’ significant
difficulty in processing speech with diverse patterns such as
stuttering [2, 3, 8], deaf speech [9], aphasia [10], second lan-
guage speech [11], as well as regional vernaculars and eth-
nic dialects [12, 13]. The inability of speech AI systems to
work with diverse speech not only creates additional barriers
for people with speech diversities to interact with popular prod-
ucts and services, like personal voice assistance and automated
phone menus, but may also lead to more serious psychological
harms [14] and reduced economic opportunities [15].

Recognizing the gaps, recent research has explored model
adaptation strategies to improve ASR accuracy for stuttered
speech. For example, Shonibare et al. proposed a ’Detect
and Pass’ method, which uses a context-aware classifier to de-
tect stuttered frames and passes this information to the ASR
model during inference, resulting in significant WER reduc-
tions [16]. Another approach involves synthesizing artificial
stuttered speech for data augmentation. Zhang et al. developed
Stutter-TTS, an end-to-end neural text-to-speech model capa-
ble of synthesizing diverse types of stuttering utterances [17].
Fine-tuning an ASR model on this synthetic data led to a 5.7%
relative reduction in WER on stuttered utterances. Benchmark-
ing ASR systems for stuttered speech is crucial for identifying
performance gaps in ASR. Liu et al. introduced ASTER, a tech-
nique for automatically testing the accessibility of ASR systems
by generating test cases that simulate realistic stuttering speech
to expose ASR failures [18].

Our work builds upon existing work to benchmark ASR
performance on stuttered speech more systematically and over
different types of transcriptions. We also delve deeper in the
hallucinations in machine transcriptions of stuttered speech to
understand their frequencies and impact on user experience.

3. Methodology
3.1. Dataset

We conduct our analysis exclusively through the SEP-28K
dataset [5] for its scale and data quality. Containing over
28,000 3-second audio clips labeled with five distinct stutter-
ing events, SEP-28K provides conversational stuttered speech
samples in a natural setting, better capturing the variability



and heterogeneity within stuttering [19] than most existing stut-
tered speech datasets (e.g. LibriStutter [20], FluencyBank [21]).
Its growing adoption by the research community also enables
comparisons and validation of our results with related studies
(e.g. [22, 23, 24, 25]).

3.2. Transcribing Audio Clips

Designed for stuttering event detection, SEP-28K does not
come with groundtruth transcription for the audio clips. To ob-
tain statistical power in our benchmarking of Whisper’s perfor-
mance for different types of stuttered speech, we sample and
manually transcribe more than 400 audio clips for each stutter-
ing type (block, prolongation, sound repetition, word repetition,
and interjection), as well as 542 fluent clips as baseline. SEP-
28K employs multiple annotators for its stuttering event anno-
tation. We thus prioritize including clips with unanimous event
label in our data to ensure we use the most representative speech
samples for each stuttering types. For prolongations, there are
less than 400 clips with unanimous label, so we also include the
clips with two reviewers’ agreement.

The first author, who is a person who stutters, listens to all
the audio clips in our sample and manually transcribes them in
two ways: verbatim and semantic. The verbatim transcription
retain stuttering utterances such as word repetitions (e.g. ”when
when are you guys getting”) and interjections (e.g. ”I, hmm,
am”), whereas the semantic transcription drops the stutters (e.g.
”when are you guys getting”). Having the verbatim transcription
of stuttered speech is meaningful to people who stutter (PWS)
as it gives them control on how their speech is represented in
the transcript [4, 26]. It also allows PWS and speech language
pathologists (SLPs) to study and analyze stuttered speech pat-
terns more accurately [27].

When transcribing, the first author notices a significant
number of mistakes in the original event labels and adjusts the
labeling for over 25% (653) of the clips in our sample. The mis-
takes mainly stem from the challenge to distinguish stuttering
disfluency and natural disfluency, especially for fluent speakers.
For example, a dragged out ”ummmm” can be a stuttering pro-
longation or a natural way for the speaker to indicate they are
thinking. To differentiate them, the annotators need to pay close
attention to the content, flow, and voice quality. When someone
stutters, they often change their tempo of speaking, change their
breathing, or their voice becomes strained. A small pause where
someone’s voice is strained is a block, but a long pause where
someone is thinking and their voice sounds fine is fluent speech.
Such subtlety was not considered during the original labeling
of SEP-28K, highlighting the need to involve people who stut-
ter—who are typically most attuned to speech changes during
stuttering moments—in the annotation of stuttered speech data.

After adjusting stuttering event labels – in particular, reas-
signing several stuttering clips as fluent – we end up sampling
and transcribing 2,621 clips to ensure we have sufficient data
for all stuttering subtypes. 542 of the 2,621 clips contain flu-
ent speech as our benchmarking baseline. The rest 2,079 audio
clips all contain at least one type of stutters, including blocks
(400 clips), prolongation (403), sound repetition (506), word
repetition (450), interjection (694). Note that the sum is greater
than 2,079, as some clips contain more than one stuttering types.

3.3. Benchmarking Whisper

We run speech-to-text transcription for each manually tran-
scribed audio clip through OpenAI’s Whisper large-v2 API1

during August, 2024 and October, 2024. We compare Whis-
per’s output with manually generated verbatim and seman-
tic transcriptions when calculating our benchmarking metrics.
Evaluating Whisper’s performance for both verbatim and se-
mantic transcriptions allows us to measure and understand its
ability to preserve stuttering in transcriptions.

3.4. Metrics

To evaluate Whisper’s transcription accuracy in our data, we
use Word Error Rate (WER) [28] to quantify syntax differ-
ences between Whisper output and manual groundtruth, and
BERT (Bidirectional Encoder Representations from Transform-
ers) [29] F1 score to measure the semantic difference. To in-
vestigate the effect of different stuttering types on Whisper, we
calculate the average WER and BERT F1 scores for each stut-
tering type, separately. In addition, as WER is calculated by
dividing the sum of three different errors (word substitutions,
deletions, and insertions) made by the model inference, over
the total number of words in the manual transcription, we also
look at different error types to better understand the behavior of
Whisper on stuttered speech.

As disfluent speech is reportedly more likely to trigger hal-
lucination [10], we also analyzed the hallucination frequency
of Whisper for different stuttering types. To automate hallu-
cination detection, we leverage the non-deterministic nature of
hallucinations, and follow a similar approach proposed by Koe-
necke et al [10] to computationally identify hallucinations by
comparing the output on different runs of Whisper’s transcrip-
tion on the same audio clip using WER, BERT F1, and insertion
rate. We calculate the WER and BERT F1 values for each audio
clip, treating Whisper’s output from the first run as the reference
and the second run as the inference. We also look at the num-
ber of words inserted by Whisper into the semantic ground truth
in the first run. The transcription from the first run is automati-
cally labeled as an hallucination if (1) WER between two runs is
greater than 0.6; (2) BERT F1 between two runs is less than 0.6;
(3) number of words inserted into the semantic ground truth is
greater than 4. One researcher then manually examine the auto-
matically identified hallucinations to correct for false positive.
Lastly, the manual labeling is validated by a second researcher
for quality control.

4. Results
4.1. Overall performance disparity

Consistent with findings with other ASR systems [2], our re-
sults show that Whisper consistently perform worse for stut-
tered speech than for fluent speech: its transcriptions of stut-
tered speech contain more word-level mistakes and are more
semantically different from the reference.

As illustrated in Figure 1a, while Whisper achieves rela-
tively low WERs for fluent speech (0.234 for Whisper v2, 0.230
for v3)2, the error rate doubles for stuttered speech: Whis-
per v2’s WERs for for semantic and verbatim transcription are

1https://platform.openai.com/docs/guides/
speech-to-text

2Whisper’s performance with fluent clips is lower than reported [30],
likely due to the short duration (3-second) of the audio clips in SEP-28K
and the resulting limited context for Whisper’s language model.
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Figure 1: Whisper v2 and v3 performance disparity between
fluent and stuttered speech, when using semantic and verbatim
manual transcriptions as ground truth

0.489 and 0.435, respectively; and Whisper v3’s WERs for se-
mantic and verbatim transcriptions are 0.420 and 0.414, respec-
tively. A smaller yet persistent gap is also observed with BERT
F1 scores (see Figure 1b).

When comparing semantic and verbatim transcription for
stuttered clips, we find that Whisper are better at generating ver-
batim than semantic transcriptions (v2 semantic WER = 0.489,
verbatim WER = 0435), but the difference diminishes in later
versions (v3 semantic WER = 0.420, verbatim WER = 0.414).
Our inspection of Whisper’s outputs verifies Whisper v2’s abil-
ity to transcribe disfluent utterances, which seem to be lost in
the later version. For example, for a clip with verbatim tran-
scription “so just” and the sound “j” repeated multiple times,
Whisper v2 is able to transcribed the repeated sound as “So, j-j-
j-j-j-just”, while Whipser v3 simply transcribing it as “so just”.

Designed to measure semantic similarity, BERT F1 scores
show minimal difference between semantic and verbatim tran-
scription tasks (see Figure 1b). This is expected as the semantic
and verbatim transcriptions of the same clip differ mostly at the
syntax level rather than the semantic level, resulting in similar
locations in the contextual embedding space used to calculate
BERT scores [29].

Lastly, despite the regression in its ability to transcribe
stuttered utterances verbatim, Whisper v3 has made progress
in closing its performance gap between stuttered and fluent
speech, improving both WER and BERT F1 scores. It is promis-
ing to see that benefits of advancing Whisper model is shared
with people with disabilities to close the equity gap.

4.2. Performance disparity by stutter subtypes

Grouping stuttered clips by stutter subtypes, we observe that
Whisper has most difficulty with sound repetitions (see Figure 2
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Figure 2: Average WERs for different types of stuttered speech
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Figure 3: Whisper hallucination frequency by speech type

sound rep), and performs relatively well for speech with word
repetitions (see Figure 2 word rep). Overall, the WER for clips
with sound repetitions is 13% to 25% higher than the average
stuttered clips, and more than doubles the WER for fluent clips.

Despite Whisper’s challenge with sound repetitions, it
shows the capacity to transcribe extra, disfluent words, such as
interjections and repeated words. As seen in Figure 2, Whipser
achieves relatively low WERs for clips with interjections and
word repetitions when comparing with verbatim transcript.

However, Whisper’s ability to transcribe disfluent words as
they are seems to diminish in the newer version. As illustrated
in Figure 2, Whisper v3 improves over v2 on all stuttering sub-
types and all tasks except for transcribing clips with word rep-
etitions verbatim. For example, for a clip with verbatim tran-
scription “which is which is terrible which is”, Whipser v2 tran-
scribes it as “it, which is, which is terrible, which is terrible.”,
whereas v3 generates “which is terrible which is terrible”.

4.3. Hallucination

Consistent with previous findings with Aphasia speech [10], we
find Whisper much more likely to hallucinate with stuttered
speech than with fluent speech. As shown in Figure 3, Whis-
per v2 hallucinates with 293 out of 2,086 (14%) stuttered clips,
as opposed to 18 out of 534 (3.3%) fluent clips. Whisper v3
again makes significant progress in reducing its hallucination
frequency, with only 2.9% (61) hallucination for stuttered clips
and 0.9% (5) for fluent clips.

Whisper v3 not only hallucinate less frequently than v2, but
also hallucinate in quite distinct ways. Our manual inspection
of transcriptions with hallucinations finds Whisper v2 often hal-
lucinate with a set of typical phrases (e.g. “thank you”, “bye
bye”), in a foreign language, and by adding a large amount of
unrelated content, whereas Whisper v3 often add one or two
words in the end to complete the sentence. Table 1 provides a
few examples of typical hallucinations by both models.

In Figure 3, we can again Whisper’s performance discrep-



Table 1: Example hallucinations.

* Contain stutter subtype annotations as defined in [4]: /b - block; /p - prolongation; /i - interjection; /r - sound repetition; [] - word repetition.

Type of Harm Manual Transcription* Whisper Transcription Model

Perpetuation of Vio-
lence

that I like o/pne that I like won those fights. v2

False Authority its in uh/i 2000 Thank you. v2

False Authority and BYE EVERYONE DRINK FRESH WATER Available now v2

Inaccurate Association so i knelt know and im
like hey

So I knelt down, and I’m like, hey, God, I’m sorry. v2

Inaccurate Association chart dispense a/pnd keep
a record of daily

If you have any questions or other problems, please post them in the comments. Have a
great day! If you want to receive daily updates on my videos, you can subscribe to my
YouTube channel.

v2

Inaccurate Association y/pou ”Today’s Question is for you Tanya, which cook do you want to meet first and how does” v2

Degrading Sound the/r It’s not. Da da da da da da da da da da da da. v2

Degrading Sound a/rll to ”Oh, oh, oh, toot, toot, toot, toot, toot, toot, ooh.” v2

Degrading Sound a/r Woof, woof, woof, woof, woof. v2

/b uh/i Bye-bye. v2

c/b/rall こんなにやられたのは念のためにやらなければ理ではない v2

Perpetuation of Vio-
lence

I am aircraft hummin aircraft handguns v3

Inaccurate Association It[It] it it asian v3

Degrading Sound ear/rth oink oink oink oink oink oink v3

Degrading Sound there’s a whole l/rot theres a whole blah blah blah blah uh uh v3

a/rll to oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh
oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh
oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh
oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh
oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh
oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh
oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh

v3

ancies across different stutter subtypes. Similar to what is ob-
served in Figure 2, clips with sound repetitions appear to be
the most challenging for Whisper: v2 hallucinates in 22.6% of
clips with sound repetitions and v3 in 6.9%. Whisper v3 has
made great stride with prolongations, reducing hallucination
frequency for this stutter type by 90%, from 15.4% to 1.47%.

Motivated by the identification and categorization of harm-
ful hallucinations by Koenecke et al [10], we also examine the
transcriptions with hallucinations for potential harm. As re-
ported in Table 1, we observe all major types of the harms iden-
tified in [10], including perpetuation of violence, inaccurate as-
sociations, and false authority. However, we also notice a new
type of harmful hallucinations when Whisper generate degrad-
ing onomatopoeia words such as “oink oink oink” and “blah
blah blah”. While Whisper v3 largely eliminates false authority
harm (i.e. thanking, website links), the degrading onomatopoeia
harm persists in v3.

5. Conclusion
This paper evaluates the performance of Whisper, a state-of-the-
art ASR model, on the SEP-28K dataset. By manually annotat-
ing 2,600 clips with verbatim transcriptions and refined stut-
ter subtype labels, we measure Whisper’s performance gap be-
tween stuttered and fluent speech, as well as disparities across
different stutter subtypes.

Our findings reveal that while newer versions of Whisper
have made progress in reducing the performance gap, they also

introduce regressions in transcribing repeated sounds or words
verbatim. Such regression is particularly concerning for the
stuttering community, as it limits their ability to authentically
preserve and represent their speech in transcripts.

We also observe a significant rate of hallucinations in Whis-
per’s transcriptions of stuttered speech – as high 14% in Whis-
per v2. This issue is especially prevalent for speech with sound
repetitions, a common and defining feature of stuttering, creat-
ing tangible harm to the lives of speakers who stutter.

Limitations and Future Directions. Our study has certain
limitations. The short and strictly timed audio clips in SEP-
28K, combined with frequent speech disfluencies, may have
made transcription more challenging for both human annota-
tors and ASR models. Evaluating Whisper on datasets with
variable-length audio, such as FluencyBank [21] and AS-70 [4],
may provide additional insights.

Community-Centered Speech Technology. This work un-
derscores the importance of incorporating the perspectives of
impacted communities in the development of fair and inclusive
speech technologies. Guided by our lived experiences of stutter-
ing, the authors of this paper designed the verbatim transcription
task and conducted an in-depth analysis of stutter subtypes. Our
approach enabled us to detect Whisper’s regression in transcrib-
ing repeated words and its weakness with sound repetitions.

We hope our work inspires deeper partnership between
speech technology researchers and the disfluent community,
collaboratively driving the progress toward more inclusive and
fair speech science and technology.
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